It's the Same Everywhere: Leveraging Symmetry for Robot Perception and Localization

Chien Erh (Cynthia) Lin & Tzu-Yuan (Justin) Lin

University of Notre Dame June 4th, 2024

1

Robots achieve human-level autonomy in the future

CURLY

Explore the Unknown

Generalizable Robotic Systems?

- Equivalent object input
- Does robotic systems understand they are the same?

Symmetry: immunity to a possible change

Symmetry can help designing efficient and robust algorithms

Equivariance: functions that preserve the transformation applied on the input to the output.

$$f(g \circ x) = g \circ f(x)$$

Invariance: output of functions is independent to the transformations applied to the input.

$$f(g \circ x) = f(x)$$

Outline

Place Recognition

Legged Robots

Field Robots

ROBOTICS

Indoor Robots

Marine Robots

CURLY

Explore the Unknown

Proprioceptive State Estimation

Point Cloud Registration

Foundation Models

Perspective Equivariant Representation Learning

Place Recognition

📕 ROBOTICS 🖾

Has the robot been to this place before? Another name: Loop Closure Detection

6

CURLY Schubert, Stefan, et al. "Visual place recognition: A tutorial." IEEE Robotics & Automation Magazine (2023). Explore the Unknown 2022. https://www.youtube.com/watch?v=nAvTdEFRh s&ab channel=RobotLearningFreiburg

Challenges in Place Recognition

Learned features are sensitive to transformation changes in 3D data

- Vehicle changes lanes
- Different orientation in a similar location
- Random rotation and drift from drones

point cloud rotated around x-axis for 0 degrees

Adding Symmetry can help stabilizing the feature

point cloud rotated around x-axis for 0 degrees

We achieve it by utilizing group convolution

- Standard 2D convolutions are translation-equivariant
 - \circ Inner product of function f and a shifted kernel $\,k$

$$(f * k)(\mathbf{x}) = \int_{\mathbb{R}^2} f(\tilde{\mathbf{x}}) k(\tilde{\mathbf{x}} - \mathbf{x}) \mathrm{d}\tilde{\mathbf{x}}$$

We achieve it by utilizing group convolution

- Standard 2D convolutions are translation-equivariant
 - \circ $\,\,$ Inner product of function f and a shifted kernel $\,k$

$$(f * k)(\mathbf{x}) = \int_{\mathbb{R}^2} f(\tilde{\mathbf{x}}) k(\tilde{\mathbf{x}} - \mathbf{x}) \mathrm{d}\tilde{\mathbf{x}}$$

• Group convolutions extend equivariance beyond translations

$$(f * k)(g) = \int_G f(\tilde{g})k(g^{-1} \cdot \tilde{g})\mathrm{d}\tilde{g}$$

Erik Bekkers. "Group Equivariant Deep Learning - Lecture 1.3: Regular group convolutional neural networks." <u>https://www.youtube.com/watch?v=cWG_11zl0ul</u> M Weiler, Maurice and Cesa, Gabriele. "General E(2)-Equivariant Steerable CNNs. " NeurIPS 2019. <u>https://github.com/QUVA-Lab/e2cnn</u>

Regular Group Convolution

- Standard 2D convolutions convolute over pixels
- Group convolution expands additional dimensions
 - We use a SE(3)-equivariant network

Results on Unseen and Challenging Data - KITTI

Trained on pre-processed submap

ROBOTICS

Test on unseen sensor measurement

CURLY

	Average Recall @ 1 % (%) ↑		
Methods	Same Direction	Opposite Direction	
PointNetVLAD ^[1]	73.18	32.47	
MinkLoc3D ^[2]	28.07	17.30	
Ours ^[3]	86.22	71.70	
	►>	_	
	-	←	

[1] Uy, Mikaela Angelina, and Gim Hee Lee. "Pointnetvlad: Deep point cloud based retrieval for large-scale place recognition." CVPR 2018. 12 [2] Komorowski, Jacek. "Minkloc3d: Point cloud based large-scale place recognition." WACV 2021. Explore the Unknown [3] Lin, Chien Erh, et al. "SE(3)-Equivariant Point Cloud-Based Place Recognition." CoRL 2022.

Place Recognition – Key Takeaway

Trained on pre-processed submap

Test on unseen sensor measurement

m

Generalizable to unseen data

CURLY

ROROTICS

Symmetry helps in challenging scenarios

[1] Uy, Mikaela Angelina, and Gim Hee Lee. "Pointnetvlad: Deep point cloud based retrieval for large-scale place recognition." CVPR 2018. [2] Komorowski, Jacek. "Minkloc3d: Point cloud based large-scale place recognition." WACV 2021. Explore the Unknown [3] Lin, Chien Erh, et al. "SE(3)-Equivariant Point Cloud-Based Place Recognition." CoRL 2022.

Outline

Place Recognition

Legged Robots

ROBOTICS

Field Robots

Indoor Robots Marine Robots

CURLY

Explore the Unknown

Proprioceptive State Estimation

Point Cloud Registration

Foundation Models

Perspective Equivariant Representation Learning

Point Cloud Registration

- Find the transformation between two point clouds
- Challenges
 - Low overlap
 - Large arbitrary transformation

Finding Correspondence

- Finding correct correspondence is essential.
- The accuracy is highly relied on the correspondence.

Transformer helps finding correspondence

• Simplified explanation of Transformer:

CURLY

• Learn where we should pay more attention at when comparing one input with another

Adding Symmetry in Transformers

INC | **ROBOTICS**

Erik Bekkers. "Group Equivariant Deep Learning - Lecture 1.3: Regular group convolutional neural networks." https://www.youtube.com/watch?v=cWG 1lzl0ul

18

CURLY Explore the Unknown Lin, Chien Erh, et al. "SE3ET: SE(3)-Equivariant Transformer for Low-Overlap Point Cloud Registration." Submitted to RA-L 2024.

Results on Rotated 3DLoMatch

CURLY

ROBOTICS 🖄

	Baseline ^[1]		Oui	rs ^[2]
Example #	RRE (deg)	RTE (m)	RRE (deg)	RTE (m)
1	7.953	0.137	0.480	0.054
2	176.097	4.585	7.488	0.167

[1] Qin, Zheng, et al. "Geometric transformer for fast and robust point cloud registration." CVPR 2022.

Explore the Unknown [2] Lin, Chien Erh, et al. "SE3ET: SE(3)-Equivariant Transformer for Low-Overlap Point Cloud Registration." Submitted to RA-L 2024.

Explore the Unknown [2] Lin, Chien Erh, et al. "SE3ET: SE(3)-Equivariant Transformer for Low-Overlap Point Cloud Registration." Submitted to RA-L 2024.

Outline

Place Recognition

Legged Robots

CURLY

Explore the Unknown

Field Robots

ROBOTICS

Indoor Robots Marine Robots

Proprioceptive State Estimation

Point Cloud Registration

Geometric Features Fusion

Foundation Models

Perspective Equivariant Representation Learning

Lie Algebraic Neuron Networks

Fusing with Foundation Models

CURLY

Explore the Unknown

ROBOTI

- Foundation models enable zero-shot transfer (without training on the specific data)
- How to obtain approximately invariant features from VLMs?

Outline

Place Recognition

Legged Robots

Full-size Vehicles

Field Robots

M | **ROBOTICS**

Indoor Robots

Marine Robots

CURLY

Explore the Unknown

Proprioceptive State Estimation

Point Cloud Registration

Lie Algebraic Neuron Networks

Foundation Models

Perspective Equivariant Representation Learning

Proprioceptive State Estimation

Kalman Filtering

• Kalman Filter^[1]

$$\frac{d}{dt}x_t = A_t x_t + B_t u_t + w_t$$

• Extended Kalman Filter (EKF)

$$\frac{d}{dt}x_t = f(x_t, u_t, w_t) \qquad A_t = \frac{\partial f}{\partial x_t} \mid_{x=x_t}$$

• Error-State EKF^[2]

$$e_t \triangleq x_t \boxminus \hat{x}_t$$

$$\frac{d}{dt}e_t = g(e_t, x_t, u_t, w_t)$$
$$\approx A_t(x_t, u_t)e_t + w_t$$

- **ROBOTICS** A CURLY Explore the Unknown
- 1. Kalman, Rudolph Emil. "A new approach to linear filtering and prediction problems." (1960): 35-45.

 Trawny, Nikolas, and Stergios I. Roumeliotis. "Indirect Kalman filter for 3D attitude estimation." University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep 2 (2005): 2005.

An incorrect estimation of the states

can lead to a wrong linearization!!

Symmetry?

Can we define an error such that it respect the symmetry of the system?

$$e_t \triangleq x_t \boxminus \hat{x}_t$$

Yes!

Define our states on a matrix Lie group: $X \in \mathcal{G}$ Ex: SO(3), SE(3)

Right-invariant Error:
$$\eta_t^r = \bar{X}_t X_t^{-1} = (\bar{X}_t L) (X_t L)^{-1}$$

Left-invariant Error: $\eta_t^l = X_t^{-1} \bar{X}_t = (L \bar{X}_t)^{-1} (L X_t)$

Invariant Kalman Filtering ^[3]

If the system dynamics satisfy the group affine property:

$$f_{u_t}(X_1X_2) = f_{u_t}(X_1)X_2 + X_1f_{u_t}(X_2) - X_1f_{u_t}(I)X_2$$

The error dynamic can be exactly model as a linear system in the Lie algebra:

$$\frac{d}{dt}\eta_t = g_{u_t}(\eta_t) \qquad \qquad \frac{d}{dt}\xi_t = A_t\xi_t$$

Lie Groups

- A Lie group ${\mathcal G}\,$ is a group that is also a differentiable manifold
- The Lie algebra ${\mathfrak G}$ is the tangent space at the identity ${\mathcal E}$
 - It is a vector space that locally captures the group structure
- One can move between $\,\mathcal{G}\,$ and $\,\mathfrak{g}\,$ using the $\mathbf{exponential}$ and $\mathbf{log}\,$ maps
 - exp: $\mathfrak{g} \mapsto \mathcal{G}, \quad X \mapsto \exp(X)$ log: $\mathcal{G} \to \mathfrak{g}, \quad g \mapsto \log(g)$

Invariant Kalman Filtering ^[3]

- Means evolves on the group.
- Tracks the covariance in the Lie algebra.

3. Barrau, Axel, and Silvère Bonnabel. "The invariant extended Kalman filter as a stable observer." IEEE Transactions on Automatic Control 62.4 (2016): 1797-1812.

Invariant Kalman Filtering^[3]

Propagation:

ROBOTICS A CURLY Explore the Unknown

Correction:

correction vector

Linearization are constant!

3. Barrau, Axel, and Silvère Bonnabel. "The invariant extended Kalman filter as a stable observer." IEEE Transactions on Automatic Control 62.4 (2016): 1797-1812.

DRIFT: Dead Reckoning In Field Time [4]

Legged Robots

Full-size Vehicles

Field Robots

CURLY

Explore the Unknown

🔣 ROBOTICS 🖾

Indoor Robots

Marine Robots

DRIFT - Estimating orientation, velocity, and position

Propagation:

Correction:

Full-size Vehicles

Full-Size Vehicle

ROBOTICS 🖄

CURLY

Explore the Unknown

•	3 Sequences
---	-------------

- Avg. Distance: 1510.43 m
- Avg. Duration: 449.15 sec

	MEKF ^[5]	DRIFT ^[4]
Final Drift (m)	203.02	51.08
Percentage (%)	12.32%	3.18%

4. Lin, Tzu-Yuan, et al. "Proprioceptive Invariant Robot State Estimation." arXiv preprint arXiv:2311.04320 (2023). 5. Sola, Joan. "Quaternion kinematics for the error-state Kalman filter." *arXiv preprint arXiv:1711.02508* (2017).

.

Field Robots

Legged Robot - Contact Detection

Deep Contact Estimator^[5]

Runs real-time on an NVIDIA Jetson AGX Xavier at 830 Hz!

Legged Robot

Proprioceptive State Estimation – Key Takeaway

Symmetry helps improve the consistency

CURLY

Explore the Unknown

N ROBOTICS

Legged Robots

Learned contacts help legged state estimation

run-size venicies

Field Robots
Image: Constraint of the second se

Outline

Place Recognition

Legged Robots

Field Robots

INC | **ROBOTICS**

Indoor Robots

Marine Robots

CURLY

Explore the Unknown

Proprioceptive State Estimation

Point Cloud Registration

Geometric Features Fusion Language VLM Features Language Prompt

Foundation Models

Perspective Equivariant Representation Learning

Neural Networks in a Lie Algebra?

- Takes elements in the Lie algebra as input.
- Adjoint (conjugation) equivariant by design.

 $f(gXg^{-1}) = gf(X)g^{-1}$

 $f(\cdot)$: Lie Neuron Networks $g\in G$: Elements in a Lie group $X\in \mathfrak{g}$: Elements in a Lie algebra

Multi Layer Perceptron (MLP)

Each neuron is a scalar

Vector Neurons^[6]

Each neuron is a \mathbb{R}^3 vector

6. Deng, Congyue, et al. "Vector neurons: A general framework for so (3)-equivariant networks." *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2021.

Lie Neurons^[7]

Each neuron is an element in the Lie algebra

7. Lin, Tzu-Yuan, Minghan Zhu, and Maani Ghaffari. "Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras." arXiv preprint arXiv:2310.04521 (2023) (Accepted for ICML 2024).

Module Overview

Explore the Unknown

Nonlinearity

Free-rotating international space station

Euler equation of motion

 $I\dot{\omega}(t) + \omega(t) \times I\omega(t) = 0$

7. National Aeronautics and Space Administration, International Space Station Program. On-Orbit Assembly, Modeling, and Mass Properties Data Book, Volume 1. June 2002.

Using Neural ODE^[8] framework

Lie Neurons learns the underlying vector field of the dynamics.

8. Chen, Ricky TQ, et al. "Neural ordinary differential equations." Advances in neural information processing systems 31 (2018).

ROBOTICS 🔺

CURLY Explore the Unknown

Train on multiple trajectories and evaluate on unseen data

Unit: rad/s	Error			Error (Change of Frame)		
Time (s)	5	15	25	5	15	25
MLP	0.428	0.717	0.800	0.474	0.733	0.805
Lie Neurons	0.005	0.014	0.018	0.005	0.014	0.018

Error: Norm distance error

Platonic Solid Classification

- Input: $\mathfrak{sl}(3)$ transformation between faces.
- Output: Platonic solid class.

INC | ROBOTICS

• Randomly rotate the solids in *test set*.

	Acc	Acc (Rotated)
MLP	95.76	36.54
Lie Neurons	99.62	99.61

Lie Algebraic Neural Network – Key Takeaway

Outline

Place Recognition

Legged Robots

M | **ROBOTICS**

Ind

Indoor Robots Marine Robots

CURLY

Explore the Unknown

Proprioceptive State Estimation

Point Cloud Registration

Foundation Models

Perspective Equivariant Representation Learning

Lie Algebraic Neuron Networks

Perspective Changes

Homography Representation

- Homography matrix
 - 8 degree of freedom
- Special linear group: SL(3)
 - 3 by 3 matrices with determinant 1

$H \in SL(3)$

Group Convolutional Neural Network

Need to discretize and define "grid" in the group.

$$H = \begin{bmatrix} c & d & e \\ f & g & h \\ i & j & k \end{bmatrix}, \quad \det(H) = 1$$

How do we discretize SL(3)?

Iwasawa Decomposition

$$H = KAN, H \in SL(3)$$

$$K \in SO(3) \quad A = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & \frac{1}{ab} \end{pmatrix} \qquad N = \begin{pmatrix} 1 & z & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

Conclusion

Place Recognition

Legged Robots

ROBOTICS

Indoor Robots

ts Marine Robots

CURLY Explore the Unknown

Proprioceptive State Estimation

Point Cloud Registration

Foundation Models

Perspective Equivariant Representation Learning

Lie Algebraic Neuron Networks

Open-sourced Software

- <u>https://github.com/UMich-CURLY/se3_equivariant_place_recognition</u>
- <u>https://github.com/UMich-CURLY/SE3ET</u>
- <u>https://github.com/UMich-CURLY/drift</u>
- <u>https://github.com/UMich-CURLY/LieNeurons</u>

Questions?

Place Recognition

Legged Robots

CURLY Explore the Unknown

Field Robots

ROBOTICS

Indoor Robots Marine Robots

Proprioceptive State Estimation

Point Cloud Registration

Foundation Models

Perspective Equivariant Representation Learning

Lie Algebraic Neuron Networks